Abstract
Here, we report the performance of a biodegradable polymer-based Plastic chip Electrode (PCE) as a current collector in supercapacitor applications. Its production was evaluated using two redox materials (conducting polymers polyaniline and poly(3,4-ethylene dioxythiophene)) and a layered material, rGO. The conducting polymers were directly deposited over the Eco-friendly PCE (EPCE) using the galvanostatic method. The rGO was prepared in the conventional way and loaded over the EPCE using a binder. Both conducting polymers and rGO showed proper specific capacitance compared to previous studies with regular current collectors. Electrodes were found highly stable during experiments in high acidic medium. The supercapacitive performance was evaluated with cyclic voltammetry, charge–discharge measurements, and impedance spectroscopy. The supercapacitive materials were also characterized for their electrical and microscopic properties. Polyaniline and PEDOT were deposited over EPCEs showing >150 Fg−1 and >120 Fg−1 specific capacitance, respectively, at 0.5 Ag−1. rGO continued to show higher particular capacitance of >250 Fg−1 with excellent charge–discharge cyclic stability. The study concludes that EPCs can be used as promising electrodes for electrical energy storage applications.
Subject
Psychiatry and Mental health,Health Policy,Neuropsychology and Physiological Psychology
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献