Computational and Experimental Investigation of the Selective Adsorption of Indium/Iron Ions by the Epigallocatechin Gallate Monomer

Author:

Liu Zhigao,Wang ZhongminORCID,Gan Weijiang,Liu Songlin,Zhang Jianglin,Ran Zhaojin,Wu Chenxi,Hu Chaohao,Wang DianhuiORCID,Chen TaoORCID,Li GuiyinORCID

Abstract

Selective recovery of indium has been widely studied to improve the resource efficiency of critical metals. However, the interaction and selective adsorption mechanism of indium/iron ions with tannin-based adsorbents is still unclear and hinders further optimization of their selective adsorption performance. In this study, the epigallocatechin gallate (EGCG) monomer, which is the key functional unit of persimmon tannin, was chosen to explore the ability and mechanism of selective separation/extraction of indium from indium–iron mixture solutions. The density functional theory calculation results indicated that the deprotonated EGCG was easier to combine with indium/iron cations than those of un-deprotonated EGCG. Moreover, the interaction of the EGCG–Fe(III) complex was dominated by chelation and electrostatic interaction, while that of the EGCG–In(III) complex was controlled by electrostatic interactions and aromatic ring stacking effects. Furthermore, the calculation of binding energy verified that EGCG exhibited a stronger affinity for Fe(III) than that for In(III) and preferentially adsorbed iron ions in acidic or neutral solutions. Further experimental results were consistent with the theoretical study, which showed that the Freundlich equilibrium isotherm fit the In(III) and Fe(III) adsorption behavior very well, and the Fe(III) adsorption processes followed a pseudo-second-order model. Thermodynamics data revealed that the adsorption of In(III) and Fe(III) onto EGCG was feasible, spontaneous, and endothermic. The adsorption rate of the EGCG monomer for Fe(III) in neutral solution (1:1 mixed solution, pH = 3.0) was 45.7%, 4.3 times that of In(III) (10.7%). This study provides an in-depth understanding of the relationship between the structure of EGCG and the selective adsorption capacity at the molecular level and provides theoretical guidance for further optimization of the selective adsorption performance of structurally similar tannin-based adsorbents.

Funder

the National Natural Science Foundation of China

the Guangxi Key Research and Development Program

Publisher

MDPI AG

Subject

General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3