Effect of Contact Point of Wire Ring on Cooling Behavior during Stelmor Cooling

Author:

Hwang Joong-KiORCID

Abstract

The influence of the contact point of wire rod on the inhomogeneity of cooling behavior within wire ring was investigated to reveal the fundamental cooling mechanism of wire rod during the Stelmor cooling process. A hotspot, a relatively high-temperature region within wire ring compared with other regions, was generated in both the central (WRc) and edge (WRe) regions of the wire ring. The WRe exhibited hotspots regardless of ring configuration. Meanwhile, the WRc exhibited hotspots with an inline arrangement; otherwise, no hotspot occurred in the WRc with a staggered arrangement. Compared with the middle regions of the wire ring, hotspots easily occurred at both the WRc and WRe due to the low-contact angle of the two wire rings. Moreover, the possibility of hotspot formation increased with increasing wire diameter due to the high-contact area and load caused by the weight of the wire rod. This is the primary reason why the WRc with a large diameter had hotspots despite the large ring pitch. Three solutions were suggested to improve the homogeneity in the mechanical properties within wire ring.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

General Materials Science

Reference31 articles.

1. Effects of ambient temperature and humidity on the controlled cooling of hot-rolled wire rod of steel;Appl. Therm. Eng.,2014

2. Development and application of online Stelmor Controlled Cooling System;Appl. Therm. Eng.,2009

3. Controlled cooling of rods;Wire J.,1981

4. Lee, Y. (2004). Rod and Bar Rolling: Theory and Applications, CRC Press. [1st ed.].

5. Improved wire rod properties resulting from controlled cooling in modern water box and Stelmor conveyor cooling system;Wire J. Int.,2007

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3