Study on Surface Reflectance Sampling Method and Uncertainty Based on Airborne Hyperspectral Images

Author:

Gao Hailiang123ORCID,Wang Qianqian12ORCID,Gu Xingfa123,Yang Jian12,Liu Qiyue3,Tao Zui12ORCID,Qiu Xingchen12,Zhang Wei1,Shi Xinda1,Zhao Xiaofei12

Affiliation:

1. National Engineering Laboratory for Satellite Remote Sensing Applications, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China

2. University of Chinese Academy of Sciences, Beijing 100049, China

3. School of Remote Sensing and Information Engineering, North China Institute of Aerospace Engineering, Langfang 065000, China

Abstract

The validation of satellite remote sensing surface reflectance products is aimed at comparing the reflectance pixel values of products with ground measurement values at the pixel scale. Due to the existence of surface heterogeneity, we cannot obtain the satellite pixel scale truth value through ground sampling, and only the satellite relative pixel scale truth value that closely approximates it can be acquired. The process of converting the point-scale spectrum of ground sampling into a pixel-scale spectrum will produce certain errors, known as point-to-pixel-scale conversion uncertainty, which is closely related to the type of sample area and the ground sampling method. In this study, we conducted research on the uncertainty of point-to-pixel-scale conversion generated via different ground sampling methods in the upscaling process. We utilized unmanned aerial vehicle (UAV) hyperspectral images to invert the surface reflectance spectral curves of wheat, corn, bare soil, and soybeans at the pixel scale, and simulate the ground measurement spectra and satellite pixel scale ground truth of different sampling methods, so as to realize the quantitative calculation of the uncertainty of the ground truth at the satellite pixel scale. On this basis, we analyzed in depth the effects of the sampling method, measurement height, and number of spectra on the scale conversion uncertainty. The research results show that airborne hyperspectral images can accurately simulate the spectra of ground measurements, and can be used as an effective means of ground spectral sampling and uncertainty analysis. When using the systematic sampling method, the more the sampling points, the smaller the uncertainty. However, the uncertainty of scale conversion tends to stabilize when the number of sampling points is increased to a certain quantity. As the height of ground measurement increases, the number of spectra within the elementary sampling unit (ESU) increases, leading to smaller scale conversion uncertainties. The research results of this study will provide support for the subsequent optimization of ground sampling methods and the improvement of measurement efficiency and measurement accuracy.

Funder

Strategic Priority Research Program of the Chinese Academy of Sciences

Common Application Support Platform for National Civil Space Infrastructure Land Observation Satellites

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3