Examining the Potential of Sentinel Imagery and Ensemble Algorithms for Estimating Aboveground Biomass in a Tropical Dry Forest

Author:

Salazar Villegas Mike H.12,Qasim Mohammad1ORCID,Csaplovics Elmar1,González-Martinez Roy3,Rodriguez-Buritica Susana3ORCID,Ramos Abril Lisette N.4,Salazar Villegas Billy2

Affiliation:

1. Institute of Photogrammetry and Remote Sensing, Technische Universität Dresden, 01062 Dresden, Germany

2. Facultad de Ciencias Sociales y Humanas, Institución Universitaria Antonio José Camacho, Cali 25663, Colombia

3. Alexander von Humboldt Biological Resources Research Institute, Bogotá 111711, Colombia

4. Growers Hub Trading, Chia 250008, Colombia

Abstract

Accurate estimations of aboveground biomass (AGB) in tropical forests are crucial for maintaining carbon stocks and ensuring effective forest management. By combining remote sensing (RS) data with ensemble algorithms, reliable AGB estimates in forests can be obtained. In this context, the freely available Sentinel-1 (S-1 SAR) and Sentinel 2 multispectral imagery (S-2 MSI) data have a significant role in enhancing accurate AGB estimations at a lower cost, which is relevant for the tropical dry forest (TDF) regions where AGB estimation is uncertain or there is a lack of comprehensive exploration. This study aims to address this gap by presenting a cost-effective and reliable AGB estimation approach in the TDF region of Colombia. For this purpose, we modeled and compared the performance of two ensemble algorithms, random forest (RF) and extreme gradient boosting (XGBoost), to estimate AGB using three predictor categories (polarizations/textures, spectral bands/vegetation indices, and a combination of both). We then examined the modeling potential of S-1 SAR and S-2 MSI imagery in predicting forest AGB and subsequently identified the most suitable variables. To construct AGB models’ field data, we employed a clustered distributed sampling approach involving 100 subsample plots, each with an area of 400 m2. Stepwise multiple linear regression was applied to identify suitable predictors from the original satellite bands, vegetation indices, and texture metrics. To produce a map of AGB, predicted AGB values were calculated for every pixel within a specific satellite subscene using the most effective ensemble algorithm. Our study findings show that the RF model, which employed combined predictor sets, displayed superior performance when evaluated against the independent validation set. The RF model successfully estimated AGB with a high degree of accuracy, achieving an R2 value of 0.78 and an RMSE value of 42.25 Mg/ha−1. In contrast, the XGBoost model performed less accurately, obtaining an R2 value of only 0.60 and an RMSE value of 48.41 Mg/ha−1. The results also indicate that S-2 vegetation indices data were more appropriate for this purpose than S-1 texture data. Despite this, S-1 cross-polarized textures were necessary during the dry season for the combined datasets. The top predictive variables for S-2 images were cab and cw, as well as red-edge bands during the wet season. As for S-1 images, texture D_VH _Hom during the dry season was the most important variable for explaining performance. Overall, the proposed approach of using freely available Sentinel data seems to improve the accuracy of AGB estimation in heterogeneous forest cover and, as such, they should be recommended as a data source for forest AGB assessment.

Funder

Open Access Publication Funding of the DFG

joint publication funds of the Technische Universität Dresden

Carl Gustav Carus Faculty of Medicine

SLUB Dresden

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3