Simulating Extraocular Muscle Dynamics. A Comparison between Dynamic Implicit and Explicit Finite Element Methods

Author:

Grasa JorgeORCID,Calvo Begoña

Abstract

The finite element method has been widely used to investigate the mechanical behavior of biological tissues. When analyzing these particular materials subjected to dynamic requests, time integration algorithms should be considered to incorporate the inertial effects. These algorithms can be classified as implicit or explicit. Although both algorithms have been used in different scenarios, a comparative study of the outcomes of both methods is important to determine the performance of a model used to simulate the active contraction of the skeletal muscle tissue. In this work, dynamic implicit and dynamic explicit solutions are presented for the movement of the eye ball induced by the extraocular muscles. Aspects such as stability, computational time and the influence of mass-scaling for the explicit formulation were assessed using ABAQUS software. Both strategies produced similar results regarding range of movement of the eye ball, total deformation and kinetic energy. Using the implicit dynamic formulation, an important amount of computational time reduction is achieved. Although mass-scaling can reduce the simulation time, the dynamic contraction of the muscle is drastically altered.

Funder

Ministerio de Ciencia, Innovación y Universidades grant number

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3