Secure HIGHT Implementation on ARM Processors

Author:

Seo HwajeongORCID,Kim Hyunjun,Jang Kyungbae,Kwon Hyeokdong,Sim Minjoo,Song Gyeongju,Uhm Siwoo,Kim Hyunji

Abstract

Secure and compact designs of HIGHT block cipher on representative ARM microcontrollers are presented in this paper. We present several optimizations for implementations of the HIGHT block cipher, which exploit different parallel approaches, including task parallelism and data parallelism methods, for high-speed and high-throughput implementations. For the efficient parallel implementation of the HIGHT block cipher, the SIMD instructions of ARM architecture are fully utilized. These instructions support four-way 8-bit operations in the parallel way. The length of primitive operations in the HIGHT block cipher is 8-bit-wise in addition–rotation–exclusive-or operations. In the 32-bit word architecture (i.e., the 32-bit ARM architecture), four 8-bit operations are executed at once with the four-way SIMD instruction. By exploiting the SIMD instruction, three parallel HIGHT implementations are presented, including task-parallel, data-parallel, and task/data-parallel implementations. In terms of the secure implementation, we present a fault injection countermeasure for 32-bit ARM microcontrollers. The implementation ensures the fault detection through the representation of intra-instruction redundancy for the data format. In particular, we proposed two fault detection implementations by using parallel implementations. The two-way task/data-parallel based implementation is secure against fault injection models, including chosen bit pair, random bit, and random byte. The alternative four-way data-parallel-based implementation ensures all security features of the aforementioned secure implementations. Moreover, the instruction skip model is also prevented. The implementation of the HIGHT block cipher is further improved by using the constant value of the counter mode of operation. In particular, the 32-bit nonce value is pre-computed and the intermediate result is directly utilized. Finally, the optimized implementation achieved faster execution timing and security features toward the fault attack than previous works.

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3