Integrated Hydrological Modeling for Watershed Analysis, Flood Prediction, and Mitigation Using Meteorological and Morphometric Data, SCS-CN, HEC-HMS/RAS, and QGIS

Author:

El-Bagoury Heba1ORCID,Gad Ahmed23ORCID

Affiliation:

1. Geography Department, Faculty of Arts, Port Said University, Port Said 42511, Egypt

2. Geosciences Department, College of Science, United Arab Emirates University, Al Ain 15551, United Arab Emirates

3. Geology Department, Faculty of Science, Ain Shams University, Cairo 11566, Egypt

Abstract

Flooding is a natural disaster with extensive impacts. Desert regions face altered flooding patterns owing to climate change, water scarcity, regulations, and rising water demands. This study assessed and predicted flash flood hazards by calculating discharge volume, peak flow, flood depth, and velocity using the Hydrologic Engineering Centre-River Analysis System and Hydrologic Modelling System (HEC-HMS and HEC-RAS) software. We employed meteorological and morphological data analyses, incorporating the soil conservation service (SCS) curve number method for precipitation losses and the SCS-Hydrograph for runoff transformation. The model was applied to two drainage basins (An-Nawayah and Al-Rashrash) in southeastern Cairo, Egypt, which recently encountered several destructive floods. The applied model revealed that 25-, 50-, and 100-year storms produced runoff volumes of 2461.8 × 103, 4299.6 × 103, and 5204.5 × 103 m3 for An-Nawayah and 6212 × 103, 8129.4 × 103, and 10,330.6 × 103 m3 for Al-Rashrash, respectively. Flood risk levels, categorised as high (35.6%), extreme (21.9%), and medium (21.12%) were assessed in low- and very-low-hazard areas. The study highlighted that the areas closer to the Nile River mouth faced greater flood impacts from torrential rain. Our findings demonstrate the effectiveness of these methods in assessing and predicting flood risk. As a mitigation measure, this study recommends the construction of five 10 m high dams to create storage lakes. This integrated approach can be applied to flood risk assessment and mitigation in comparable regions.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3