Stiffness Estimates for Composites with Elliptic Cylindrical Voids

Author:

Becker FabianORCID,Hopmann Christian

Abstract

A two-step homogenization procedure is presented to investigate the stiffness of a unidirectional continuous fiber-reinforced composite material containing voids of different shapes and volume contents. Since the Mori–Tanaka scheme is limited to moderate volume contents of the inhomogeneity phase, fiber and matrix are homogenized with semi-empirical relations with use of the adjusted fiber volume content in a first step. In the second step, the Mori–Tanaka scheme is applied to obtain the homogenized stiffness tensor of a transversely isotropic material containing voids aligned with the fiber direction. The voids are modelled with infinite length, but an elliptic base characterized by the aspect ratio. The tensor components of the Eshelby tensor for this case are presented in closed form for a transversely isotropic material depending on the aspect ratio and matrix material properties. The scheme is solved directly for easy implementation and the use of fast calculations of the effective engineering constants of a composite material containing voids. Experimental results from literature for different void contents and shapes are compared to the predicted moduli with cylindrical voids. From the results it is further concluded that the aspect ratio of the void and the manufacturing process of the composite should be considered.

Funder

Volkswagen Foundation

Publisher

MDPI AG

Subject

General Materials Science

Reference48 articles.

1. Effect of Voids on Mechanical Properties of Graphite Fiber Composites;Lenoe,1970

2. The influence of void content on the structural flexural performance of unidirectional glass fibre reinforced polypropylene composites

3. Effect of voids on failure mechanisms in RTM laminates

4. Effects of processing induced defects on laminate response: Interlaminar tensile strength;Gürdal;SAMPE J.,1991

5. Study on Fatigue Behaviors of Porous T300/924 Carbon Fiber Reinforced Polymer Unidirectional Laminates

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3