Selected Tribological Properties and Vibrations in the Base Resonance Zone of the Polymer Composite Used in the Aviation Industry

Author:

Krzyzak AnetaORCID,Kosicka EwelinaORCID,Borowiec MarekORCID,Szczepaniak RobertORCID

Abstract

The revolution in the global market of composite materials is evidenced by their increasing use in such segments as the transport, aviation, and wind industries. The innovative aspect of this research is the methodology approach, based on the simultaneous analysis of mechanical and tribological loads of composite materials, which are intended for practical use in the construction of aviation parts. Simultaneously, the methodology allows the composition of the composites used in aviation to be optimized. Therefore, the presented tests show the undefined properties of the new material, which are necessary for verification at the application stage. They are also a starting point for further research planned by the authors related to the improvement of the tribological properties of this material. In this article, the selected mechanical and tribological properties of an aviation polymer composite are investigated with the matrix of L285-cured hardener H286 and six reinforcement layers of carbon fabric GG 280P/T. The structure of a polymer composite has a significant influence on its mechanical properties; thus, a tribological analysis in the context of abrasive wear in reciprocating the movement for the specified polymer composite was performed. Moreover, the research was expanded to dynamic analysis for the discussed composite. This is crucial knowledge of material dynamics in the context of aviation design for the conditions of resonance vibrations. For this reason, experimental dynamical investigations were performed to determine the basic resonance of the material and its dynamics behavior response. The research confirmed the assumed hypotheses related to the abrasive wear process for the newly developed material, as well as reporting an empirical evaluation of the dependencies of the resonance zone from the fabric orientation sets.

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3