With PBDB-T as the Donor, the PCE of Non-Fullerene Organic Solar Cells Based on Small Molecule INTIC Increased by 52.4%

Author:

Zhang Weifang,Li Zicha,Zhao SulingORCID,Xu Zheng,Qiao Bo,Song Dandan,Wageh S.,Al-Ghamdi Ahmed

Abstract

At present, most high-performance non-fullerene materials are centered on fused rings. With the increase in the number of fused rings, production costs and production difficulties increase. Compared with other non-fullerenes, small molecule INTIC has the advantages of easy synthesis and strong and wide infrared absorption. According to our previous report, the maximum power conversion efficiency (PCE) of an organic solar cell using PTB7-Th:INTIC as the active layer was 7.27%. In this work, other polymers, PTB7, PBDB-T and PBDB-T-2F, as the donor materials, with INTIC as the acceptor, are selected to fabricate cells with the same structure to optimize their photovoltaic performance. The experimental results show that the optimal PCE of PBDB-T:INTIC based organic solar cells is 11.08%, which, thanks to the open voltage (VOC) increases from 0.80 V to 0.84 V, the short circuit current (JSC) increases from 15.32 mA/cm2 to 19.42 mA/cm2 and the fill factor (FF) increases from 60.08% to 67.89%, then a 52.4% improvement in PCE is the result, compared with the devices based on PTB7-Th:INTIC. This is because the PBDB-T:INTIC system has better carrier dissociation and extraction, carrier transportation and higher carrier mobility.

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3