Measurement of the Thermophysical Properties of Anisotropic Insulation Materials with Consideration of the Effect of Thermal Contact Resistance

Author:

Han Dongxu,Yue KaiORCID,Cheng Liang,Yang Xuri,Zhang Xinxin

Abstract

A novel method involving the effect of thermal contact resistance (TCR) was proposed using a plane heat source smaller than the measured samples for improving measurement accuracy of the simultaneous determination of in-plane and cross-plane thermal conductivities and the volumetric heat capacity of anisotropic materials. The heat transfer during the measurement process was mathematically modeled in a 3D Cartesian coordinate system. The temperature distribution inside the sample was analytically derived by applying Laplace transform and the variables separation method. A multiparameter estimation algorithm was developed on the basis of the sensitivity analysis of the parameters to simultaneously estimate the measured parameters. The correctness of the algorithm was verified by performing simulation experiments. The thermophysical parameters of insulating materials were experimentally measured using the proposed method at different temperatures and pressures. Fiber glass and ceramic insulation materials were tested at room temperature. The measured results showed that the relative error was 1.6% less than the standard value and proved the accuracy of the proposed method. The TCRs measured at different pressures were compared with those obtained using the steady-state method, and the maximum deviation was 8.5%. The thermal conductivity obtained with the contact thermal resistance was smaller than that without the thermal resistance. The measurement results for the anisotropic silica aerogels at different temperatures and pressures revealed that the thermal conductivity and thermal contact conductance increased as temperature and pressure increased.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3