Investigations into the Improvement of the Mechanical Properties of Ti-5Al-4Mo-4Cr-2Sn-2Zr Titanium Alloy by Using Low Energy Laser Peening without Coating

Author:

Xue Dingyuan,Jiao Yang,He WeifengORCID,Shen XiaojunORCID,Gao Yangjun,Wang Lili

Abstract

Mechanical properties, such as residual stress, micro-hardness and fatigue performance, of the Ti-5Al-4Mo-4Cr-2Sn-2Zr titanium alloy were improved via the laser peening without coating (LPwC) with a water-penetrable wavelength of 532 nm and pulse duration of 10 ns. In this paper, three kinds of laser energy, namely 85, 110 and 160 mJ were used to process the samples. The titanium alloy samples were also peened with different impact times (1, 3 or 5 impacts) at the energy of 85 mJ. The micro-hardness and residual stress distribution results provided that LPwC can introduce compressive residual stress (CRS) and also induce hardening of the target materials. Further, micro-hardness and CRS showed the increasing trends when the laser impact times increased. However, the CRS and micro-hardness decreased while the laser energy increased from 110 to 160 mJ, which was attributed to the dynamic equilibrium between the thermal and mechanical effects of LPwC. High cycle fatigue strength of the titanium alloy was significantly improved from 360 to 490.3 MPa after three impacts LPwC. The strengthening mechanism of fatigue strength subjected to LPwC was a combined effect between the laser-induced CRS and the high-density dislocations.

Funder

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3