Biomass and Carbon Stock Quantification in Cork Oak Forest of Maamora Using a New Approach Based on the Combination of Aerial Laser Scanning Carried by Unmanned Aerial Vehicle and Terrestrial Laser Scanning Data

Author:

Sanaa Fadil,Imane SebariORCID,Mohamed Bouhaloua,Kenza Ait El kadi,Souhail Kellouch,Lfalah Hamza,Khadija Meghraoui

Abstract

The Mediterranean forests, particularly Cork oak (Quercus suber L., 1927), make a major contribution to the fight against climate change through Carbon sequestration. Hence, there is a great interest in the accurate quantification of biomass and carbon stock. In this context, this study aims at assessing the performance of a new approach, based on the combination of Unmanned aerial vehicle airborne Aerial laser scanning (ALS-UAV) and Terrestrial laser scanning (TLS) data, in the determination of dendrometric parameters (Circumference at 1.30 m and Tree Height), and consequently the estimation of biomass and carbon stock, considering field data as reference. This study takes the Maamora forest in Morocco as an example of a Mediterranean Cork oak forest. The methodology consists of collecting data at three levels: the entire area level for an ALS-UAV scan, the plot and tree levels for TLS surveys, as well as field data collection. Afterwards, dendrometric parameters (Circumference at 1.30 m and the Tree height) were estimated using individual tree segmentation and biomass; the carbon stock (aboveground, belowground, and total) was estimated using allometric equations. The comparison of the estimated dendrometric parameters with those measured in the field shows a strong relationship, with a Pearson coefficient of 0.86 and 0.83, a correlation coefficient (R2) of 0.81 and 0.71, and a Root mean square error (RMSE) of 1.84 cm and 0.47 m, respectively. Concerning the biomass and carbon stock estimation, the proposed approach gives a satisfactory accuracy, with a Pearson coefficient of 0.77, an R2 of 0.83, and an RMSE of 36.40 kg for biomass and 20.24 kg for carbon stock.

Publisher

MDPI AG

Subject

Forestry

Reference49 articles.

1. Climate Change 2022: Impacts, Adaptation, and Vulnerability. Contribution of Working Group II to the Six Assessment Report of the Intergovernmental Panel on Climate Change https://www.ipcc.ch/report/ar6/wg2/

2. Global Carbon Budget 2020

3. Global maps of twenty-first century forest carbon fluxes

4. Land Use, Land-Use Change and Forestry: A Special Report of the Intergovernmental Panel on Climate Change;Watson,2000

5. Integrated land-use systems: Assessment of promising agroforest and alternative land-use practices to enhance carbon conservation and sequestration

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3