Abstract
Flexible and stretchable conductive materials have received significant attention due to their numerous potential applications in flexible printed electronics. In this paper, we describe a new type of conductive filler for flexible electrodes—silver nanonets prepared through the “dissolution–recrystallization” solvothermal route from porous silver nanoflakes. These new silver fillers show characteristics of both nanoflakes and nanoparticles with propensity to form interpenetrating polymer–silver networks. This effectively minimizes trade-off between composite electrode conductivity and stretchability and enables fabrication of the flexible electrodes simultaneously exhibiting high conductivity and mechanical durability. For example, an electrode with uniform, networked silver structure from the flakiest silver particles showed the lowest increase of resistivity upon extension (3500%), compared to that of the electrode filled with less flaky (3D) particles (>50,000%).
Funder
National Natural Science Foundation of China
Subject
General Materials Science
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献