Structural Characterisation and Chemical Stability of Commercial Fibrous Carbons in Molten Lithium Salts

Author:

Karakashov BlagojORCID,Fierro VanessaORCID,Mathieu Sandrine,Gadonneix Philippe,Medjahdi Ghouti,Celzard AlainORCID

Abstract

The growing trend towards sustainable energy production, while intermittent, can meet all the criteria of energy demand through the use and development of high-performance thermal energy storage (TES). In this context, high-temperature hybrid TES systems, based upon the combination of fibrous carbon hosts and peritectic phase change materials (PCMs), are seen as promising solutions. One of the main conditions for the operational viability of hybrid TES is the chemical inertness between the components of the system. Thus, the chemical stability and compatibility of several commercial carbon felts (CFs) and molten lithium salts are discussed in the present study. Commercial CFs were characterised by elemental analysis, X-ray diffraction (XRD) and Raman spectroscopy before being tested in molten lithium salts: LiOH, LiBr, and the LiOH/LiBr peritectic mixture defined as our PCM of interest. The chemical stability was evaluated by gravimetry, gas adsorption and scanning electron microscopy (SEM). Among the studied CFs, the materials with the highest carbon purity and the most graphitic structure showed improved stability in contact with molten lithium salts, even under the most severe test conditions (750 °C). The application of the Arrhenius law allowed calculating the activation energy (in the range of 116 to 165 kJ mol−1), and estimating the potential stability of CFs at actual application temperatures. These results confirmed the applicability of CFs as porous hosts for stabilising peritectic PCMs based on molten lithium salts.

Funder

Agence Nationale de la Recherche

European Regional Development Fund

Publisher

MDPI AG

Subject

General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3