Abstract
In 1954, the Yangtze River valley was hit by heavy precipitation anomalies, which caused large casualties and economic losses; however, systematic analyses of the causes are lacking. Adopting the latest national historical precipitation data collected by the China Meteorological Administration (CMA) and global sea surface temperature (SST) records, this retrospective study determined the spatial–temporal distribution characteristics of the precipitation in 1954 in Wuhan, a city situated in the Yangtze River valley. The results confirmed that the 1954 precipitation anomalies were characterized by a high volume and a long period of rainfall, plus numerous cloudbursts, with most of the precipitation concentrated during June and July at the mid- and low-Yangtze areas along the Yangtze. An El Niño event caused the West Pacific subtropical highs to continually move southward during the summer, creating a long-term rainband in the drainage basin. Moreover, the continued low SSTs in the Sea of Okhotsk generated an active blocking high that continuously brought high-latitude cold air into the south, boosting precipitation over the drainage basin. This study proposed a new causal model of summertime precipitation across the Yangtze River valley in 1954, whereby the unusual SST changes initially triggered atmospheric circulation anomalies, which caused the precipitation anomalies of 1954.
Funder
National Key R&D Program of China
National Natural Science Foundation of China
Subject
General Earth and Planetary Sciences
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献