Small Sample Hyperspectral Image Classification Based on Cascade Fusion of Mixed Spatial-Spectral Features and Second-Order Pooling

Author:

Feng FanORCID,Zhang Yongsheng,Zhang Jin,Liu BingORCID

Abstract

Hyperspectral images can capture subtle differences in reflectance of features in hundreds of narrow bands, and its pixel-wise classification is the cornerstone of many applications requiring fine-grained classification results. Although three-dimensional convolutional neural networks (3D-CNN) have been extensively investigated in hyperspectral image classification tasks and have made significant breakthroughs, hyperspectral classification under small sample conditions is still challenging. In order to facilitate small sample hyperspectral classification, a novel mixed spatial-spectral features cascade fusion network (MSSFN) is proposed. First, the covariance structure of hyperspectral data is modeled and dimensionality reduction is conducted using factor analysis. Then, two 3D spatial-spectral residual modules and one 2D separable spatial residual module are used to extract mixed spatial-spectral features. A cascade fusion pattern consisting of intra-block feature fusion and inter-block feature fusion is constructed to enhance the feature extraction capability. Finally, the second-order statistical information of the fused features is mined using second-order pooling and the classification is achieved by the fully connected layer after L2 normalization. On the three public available hyperspectral datasets, Indian Pines, Houston, and University of Pavia, only 5%, 3%, and 1% of the labeled samples were used for training, the accuracy of MSSFN in this paper is 98.52%, 96.31% and 98.83%, respectively, which is far better than the contrast models and verifies the effectiveness of MSSFN in small sample hyperspectral classification tasks.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3