Abstract
LuTan-1 (LT-1) is an innovative spaceborne radar Earth observation mission including two satellites equipped with synthetic aperture radar (SAR) which will be launched in 2022. Active phased array antennas that can be divided into two physical channels are equipped on each satellite. The signal can be transmitted through the full antenna without broadening and recorded by each channel. Therefore, two methods can be used to preprocess the dual-channel receiving signals, referred to as dual-channel echo reconstruction and dual-channel echo synthesis. The former is inherited from the traditional high-resolution wide-swath mode and the latter is a method that takes coherent superposition as the reference. This paper researches the impacts of the two methods in system performance and imaging quality. Principles and theoretical models are firstly given. Furthermore, the system performance under the “L1A_SM_S” working mode of the LT-1 is simulated to compare the differences between the two methods, which mainly focuses on azimuth ambiguity-to-signal ratio, noise equivalent sigma zero, and the performance of block adaptive quantization. Afterwards, the test data acquired by the ground validation system of the LT-1 are used for the hardware-in-the-loop simulation to demonstrate the imaging quality between the two methods. Finally, a quantitative comparison is given.
Subject
General Earth and Planetary Sciences
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献