A New Type of Red-Green-Blue Composite and Its Application in Tropical Cyclone Center Positioning

Author:

Chen LirenORCID,Zhuge XiaoyongORCID,Tang XiaodongORCID,Song Jinjie,Wang Yuan

Abstract

Weak tropical cyclone (TC) center positioning is difficult work in operational forecasting. In the present study, a TC-red-green-blue (TC-RGB) composite was designed by using satellite multichannel observations (reflectance, brightness temperature, and brightness temperature differences). Compared with single channel images, TC-RGB composites can clearly show the exposed low-level circulation (LLC) of weak TCs under large vertical wind shear. Based on the guidelines of TC-RGB composites for TC center positioning, we repositioned 83 western North Pacific (WNP) TC cases during 2017–2019. Then, the comparisons of TC center positions were made between the TC-RGB composite and the Regional Specialized Meteorological Centre-Tokyo (RSMC-Tokyo), the Joint Typhoon Warning Center (JTWC) and the China Meteorological Administration-Shanghai Typhoon Institute (CMA-STI). Via case analysis of TC Kalmaegi (2019), it was found that the best-track data from the RSMC-Tokyo, JTWC and CMA-STI would have over 100 km biases at the early stage of TC life history. Taking all the 83 TC cases into account, the results show that the average center position biases and standard deviations for weak TCs under small vertical wind shear in the daytime are 5 km larger than those under large vertical wind shear at nighttime. When considering the 83 TC cases with clear LLC centers, the difference of these two biases is 10 km. The average biases are mostly above 20 km in the areas south of 18° N and north of 36° N over the WNP. Conversely, in the areas between 18° N and 36° N over the WNP, they are mostly below 20 km.

Funder

National Key Research and Development Programs of China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3