Fine-Scale Mapping of Natural Ecological Communities Using Machine Learning Approaches

Author:

Bhatt ParthORCID,Maclean Ann,Dickinson Yvette,Kumar ChandanORCID

Abstract

Remote sensing technology has been used widely in mapping forest and wetland communities, primarily with moderate spatial resolution imagery and traditional classification techniques. The success of these mapping efforts varies widely. The natural communities of the Laurentian Mixed Forest are an important component of Upper Great Lakes ecosystems. Mapping and monitoring these communities using high spatial resolution imagery benefits resource management, conservation and restoration efforts. This study developed a robust classification approach to delineate natural habitat communities utilizing multispectral high-resolution (60 cm) National Agriculture Imagery Program (NAIP) imagery data. For accurate training set delineation, NAIP imagery, soils data and spectral enhancement techniques such as principal component analysis (PCA) and independent component analysis (ICA) were integrated. The study evaluated the importance of biogeophysical parameters such as topography, soil characteristics and gray level co-occurrence matrix (GLCM) textures, together with the normalized difference vegetation index (NDVI) and NAIP water index (WINAIP) spectral indices, using the joint mutual information maximization (JMIM) feature selection method and various machine learning algorithms (MLAs) to accurately map the natural habitat communities. Individual habitat community classification user’s accuracies (UA) ranged from 60 to 100%. An overall accuracy (OA) of 79.45% (kappa coefficient (k): 0.75) with random forest (RF) and an OA of 75.85% (k: 0.70) with support vector machine (SVM) were achieved. The analysis showed that the use of the biogeophysical ancillary data layers was critical to improve interclass separation and classification accuracy. Utilizing widely available free high-resolution NAIP imagery coupled with an integrated classification approach using MLAs, fine-scale natural habitat communities were successfully delineated in a spatially and spectrally complex Laurentian Mixed Forest environment.

Funder

US Forest Service

The Nature Conservancy

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference122 articles.

1. A Dictionary of Ecology, Evolution and Systematics.

2. The Use and Abuse of Vegetational Concepts and Terms

3. Ecosystem Geography: From Ecoregions to Sites;Bailey,2009

4. Identifying Ecoregion Boundaries

5. A forest classification for the Maritime Provinces;Loucks;Proc. Nova Scotian Inst. Sci.,1962

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3