Physical and Biochemical Responses to Sequential Tropical Cyclones in the Arabian Sea

Author:

Wang TongyuORCID,Chen Fajin,Zhang Shuwen,Pan JiayiORCID,Devlin Adam T.,Ning Hao,Zeng Weiqiang

Abstract

The upper-ocean physical and biochemical responses to sequential tropical cyclones (TCs) Kyarr and Maha in the Arabian Sea (AS) were investigated using data from satellites and Bio-Argo floats. Corresponding to slow and strong sequential TCs, two cooling processes and two short chlorophyll a (chl-a) blooms occurred on the sea surface, separated by 6–7 days, and three cold eddies appeared near the TC paths, with sea surface temperatures dropping more than 6 °C. Phytoplankton blooms occurred near cold eddies e1, e2, and e3, with chl-a concentrations reaching 12.76, 23.09, and 16.51 mg/m3, respectively. The depth-integrated chl-a analysis confirmed that the first chl-a enhancement was related to the redistribution of chl-a associated with TC-induced Ekman pumping and vertical mixing at the base of the mixed layer post-TC Kyarr. The subsequent, more pronounced chl-a bloom occurred due to the net growth of phytoplankton, as nutrient-rich cold waters were brought into the euphotic layer through Ekman pumping, entrainment, and eddy pumping post-TC Maha. Upwelling (vertical mixing) was the dominant process allowing the resupply of nutrients near (on the right side of) the TC path. The results derived from a biogeochemistry model indicated that the chl-a evolution was consistent with the observations recorded on Bio-Argo floats. This study suggests that in sequential TC-induced phytoplankton blooms, the redistribution of chl-a is a major mechanism for the first bloom, when high chl-a concentrations occur in the subsurface layer, whereas the second bloom is fueled by nutrients supplied from the deep layer.

Funder

Scientific Research Start-Up Foundation of Shantou University

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3