Semantic Segmentation of Very-High-Resolution Remote Sensing Images via Deep Multi-Feature Learning

Author:

Su Yanzhou,Cheng Jian,Bai HaiweiORCID,Liu Haijun,He Changtao

Abstract

Currently, an increasing number of convolutional neural networks (CNNs) focus specifically on capturing contextual features (con. feat) to improve performance in semantic segmentation tasks. However, high-level con. feat are biased towards encoding features of large objects, disregard spatial details, and have a limited capacity to discriminate between easily confused classes (e.g., trees and grasses). As a result, we incorporate low-level features (low. feat) and class-specific discriminative features (dis. feat) to boost model performance further, with low. feat helping the model in recovering spatial information and dis. feat effectively reducing class confusion during segmentation. To this end, we propose a novel deep multi-feature learning framework for the semantic segmentation of VHR RSIs, dubbed MFNet. The proposed MFNet adopts a multi-feature learning mechanism to learn more complete features, including con. feat, low. feat, and dis. feat. More specifically, aside from a widely used context aggregation module for capturing con. feat, we additionally append two branches for learning low. feat and dis. feat. One focuses on learning low. feat at a shallow layer in the backbone network through local contrast processing, while the other groups con. feat and then optimizes each class individually to generate dis. feat with better inter-class discriminative capability. Extensive quantitative and qualitative evaluations demonstrate that the proposed MFNet outperforms most state-of-the-art models on the ISPRS Vaihingen and Potsdam datasets. In particular, thanks to the mechanism of multi-feature learning, our model achieves an overall accuracy score of 91.91% on the Potsdam test set with VGG16 as a backbone, performing favorably against advanced models with ResNet101.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference54 articles.

1. Rethinking atrous convolution for semantic image segmentation;Chen;arXiv,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3