A Scalable Computing Resources System for Remote Sensing Big Data Processing Using GeoPySpark Based on Spark on K8s

Author:

Guo JifuORCID,Huang ChunlinORCID,Hou Jinliang

Abstract

As a result of Earth observation (EO) entering the era of big data, a significant challenge relating to by the storage, analysis, and visualization of a massive amount of remote sensing (RS) data must be addressed. In this paper, we proposed a novel scalable computing resources system to achieve high-speed processing of RS big data in a parallel distributed architecture. To reduce data movement among computing nodes, the Hadoop Distributed File System (HDFS) is established on nodes of K8s, which are also used for computing. In the process of RS data analysis, we innovatively use the tile-oriented programming model instead of the traditional strip-oriented or pixel-oriented approach to better implement parallel computing in a Spark on Kubernetes (K8s) cluster. A large RS raster layer can be abstracted as a user-defined tile format of any size, so that a whole computing task can be divided into multiple distributed parallel tasks. The computing resources applied by users would be immediately assigned in the Spark on K8s cluster by simply configuring and initializing SparkContext through a web-based Jupyter notebook console. Users can easily query, write, or visualize data in any box size from the catalog module in GeoPySpark. In summary, the system proposed in this study can provide a distributed scalable resources system for assembling big data storage, parallel computing, and real-time visualization.

Funder

National Natural Science Foundation of China

Strategic Priority Research Program of the Chinese Academy of Sciences

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference62 articles.

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Analysis of Optimization Strategies for Big Data Storage Management: A Study;2023 4th International Conference on Electronics and Sustainable Communication Systems (ICESC);2023-07-06

2. Scalable Data Processing Platform for Earth Observation Data Repositories;Scalable Computing: Practice and Experience;2023-04-19

3. Deepfakes Spark Implementation for Big Data Analytics;Advances in Multimedia and Interactive Technologies;2023-01-03

4. An Intelligent Cardiovascular Diseases Prediction System Focused on Privacy;Intelligent Automation & Soft Computing;2023

5. Challenges and Opportunities in the Remote Sensing Big Data;Springer Remote Sensing/Photogrammetry;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3