Satellite Remote Sensing of Water Quality Variation in a Semi-Enclosed Bay (Yueqing Bay) under Strong Anthropogenic Impact

Author:

Zhu BozhongORCID,Bai Yan,Zhang Zhao,He Xianqiang,Wang Zhihong,Zhang Shugang,Dai Qian

Abstract

The semi-enclosed bays impacted by heavy anthropogenic activities have weak water exchange and purification capacities. Most of the sea bays have suffered severe eutrophication, water quality deterioration, ecosystem degradation and other problems. Although many countries and local governments have carried out corresponding environmental protection actions, the evaluation of their effectiveness still requires monitoring technology and data support for long-term water environment change. In this study, we take Yueqing Bay, the fourth largest bay in China, as a case to study the satellite-based water quality monitoring and variation analysis. We established a nutrient retrieval model for Yueqing Bay to produce a long-term series of nutrient concentration products in Yueqing Bay from 2013 to 2020, based on Landsat remote sensing images and long-term observation data, combined with support vector machine learning and water temperature and satellite spectra as input parameters, and then we analyzed its spatiotemporal variations and driving factors. In general, nutrient concentrations in the western part of the bay were higher than those in the eastern part. Levels of dissolved inorganic nitrogen (DIN) were lower in summer than in spring and winter, and reactive phosphate (PO4-P) levels were lower in summer and higher in autumn. In terms of natural factors, physical effects (e.g., seasonal variations in flow field) and biological effects (e.g., seasonal differences in the intensity of plankton photosynthesis) were the main causes of seasonal differences in nutrient concentration in Yueqing Bay. Nutrient concentration generally increased from 2013 to 2015 but decreased slightly after 2015. Over the past decade, the economy and industry of Yueqing Bay basin have developed rapidly. Wastewater resulting from anthropogenic production and consumption was transported via streams into Yueqing Bay, leading to the continuous increase in nutrient concentrations (the variation rates: aDIN>0, aPO4−P>0), which directly or indirectly caused high nutrient concentrations in some areas of the bay (e.g., Southwest Shoal at the mouth of Yueqing Bay). After 2015, the various ecological remediation policies adopted by cities around Yueqing Bay have mitigated, to some extent, the increasing nutrient concentration trends (the variation rates: aDIN<0, aPO4−P<0), but not significantly (P > 0.1). The environmental restoration of Yueqing Bay also requires continuous and long-term ecological protection and restoration work to be effective. This research can provide a reference for ecological environment monitoring and remote sensing data application for similar semi-enclosed bays, and support the sustainable development of the bay.

Funder

National Key Research and Development Program of China

Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3