Transformer Neural Network for Weed and Crop Classification of High Resolution UAV Images

Author:

Reedha Reenul,Dericquebourg Eric,Canals RaphaelORCID,Hafiane AdelORCID

Abstract

Monitoring crops and weeds is a major challenge in agriculture and food production today. Weeds compete directly with crops for moisture, nutrients, and sunlight. They therefore have a significant negative impact on crop yield if not sufficiently controlled. Weed detection and mapping is an essential step in weed control. Many existing research studies recognize the importance of remote sensing systems and machine learning algorithms in weed management. Deep learning approaches have shown good performance in many agriculture-related remote sensing tasks, such as plant classification, disease detection, etc. However, despite the success of these approaches, they still face many challenges such as high computation cost, the need of large labelled datasets, intra-class discrimination (in growing phase weeds and crops share many attributes similarity as color, texture, and shape), etc. This paper aims to show that the attention-based deep network is a promising approach to address the forementioned problems, in the context of weeds and crops recognition with drone system. The specific objective of this study was to investigate visual transformers (ViT) and apply them to plant classification in Unmanned Aerial Vehicles (UAV) images. Data were collected using a high-resolution camera mounted on a UAV, which was deployed in beet, parsley and spinach fields. The acquired data were augmented to build larger dataset, since ViT requires large sample sets for better performance, we also adopted the transfer learning strategy. Experiments were set out to assess the effect of training and validation dataset size, as well as the effect of increasing the test set while reducing the training set. The results show that with a small labeled training dataset, the ViT models outperform state-of-the-art models such as EfficientNet and ResNet. The results of this study are promising and show the potential of ViT to be applied to a wide range of remote sensing image analysis tasks.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3