Differential Response of Phaeodactylum tricornutum and Cylindrotheca fusiformis to High Concentrations of Cu2+ and Zn2+

Author:

Huang Aiyou,Wang Yujue,Duan Jiawen,Guo Shiyi,Xie Zhenyu

Abstract

Diatoms can be used as biosensors to assess aquatic environment quality, because they are widely distributed in almost all aquatic environments and show varied sensitivities toward heavy metal ions. The marine planktonic diatoms Phaeodactylum tricornutum (P. tricornutum) and Cylindrotheca fusiformis (C. fusiformis) are typical representatives of planktonic diatoms and benthic diatoms, respectively. C. fusiformis is very sensitive to changes in the concentration of heavy metal ions, and can be used as an indicator of the quality of the sedimental environment, while P. tricornutum can tolerate higher concentrations of heavy metal ions. To explore the potential difference in responses to heavy metal ions between planktonic and benthic diatoms, we compared the transcriptome of P. tricornutum and C. fusiformis under Cu2+ and Zn2+ treatment. The results indicated that P. tricornutum has several genes involved in ion transmembrane transport and ion homeostasis, which are significantly downregulated under Cu2+ and Zn2+ treatment. However, this enrichment of ion transmembrane transport- and ion homeostasis-related genes was not observed in C. fusiformis under Cu2+ and Zn2+ treatment. Additionally, genes related to heavy metal ion stress response such as peroxiredoxin, peroxidase, catalase, glutathione metabolism, phytochelatin, oxidative stress and disulfide reductase, were upregulated in P. tricornutum under Cu2+ and Zn2+ treatment, whereas most of them were downregulated in C. fusiformis under Cu2+ and Zn2+ treatment. This difference in gene expression may be responsible for the difference in sensitivity to heavy metals between P. tricornutum and C. fusiformis.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Hainan Province

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3