Characteristics and Changes in the Properties of Cereal and Rapeseed Straw Used as Energy Feedstock

Author:

Stolarski Mariusz Jerzy12ORCID,Welenc Michał1,Krzyżaniak Michał1ORCID,Olba-Zięty Ewelina12ORCID,Stolarski Jakub1,Wierzbicki Sławomir3ORCID

Affiliation:

1. Department of Genetics, Plant Breeding and Bioresource Engineering, Faculty of Agriculture and Forestry, University of Warmia and Mazury in Olsztyn, 10-724 Olsztyn, Poland

2. Centre for Bioeconomy and Renewable Energies, University of Warmia and Mazury in Olsztyn, Plac Łódzki 3, 10-719 Olsztyn, Poland

3. Department of Mechatronics, Faculty of Technical Sciences, University of Warmia and Mazury in Olsztyn, Oczapowskiego 11, 10-719 Olsztyn, Poland

Abstract

Solid biofuels, including straw as production residue, are still the largest energy feedstock in the structure of primary energy production from renewable energy sources. However, the properties of straw as a solid biofuel can vary depending on the species from which it was produced and the harvest period and year. Therefore, this study aimed to assess the thermophysical properties and elemental composition of six types of straw (rye, oat, triticale, wheat, corn, and rapeseed straw) obtained over three consecutive years (2020, 2021, 2022). Rye straw had the lowest moisture (mean: 10.55%), ash (mean: 2.71% DM), nitrogen (mean: 0.54% DM) and chlorine (mean: 0.046% DM) contents and the highest carbon content (mean: 47.93% DM), a higher heating value—HHV (mean: 19.03 GJ Mg−1 DM) and a lower heating value—LHV (mean: 15.71 GJ Mg−1). Triticale straw had similar properties, classifying it into the same cluster as rye straw. Corn straw had a remarkably high moisture content (mean: 48.91%), low LHV and high chlorine content. Rapeseed straw contained high levels of Cl, S, N and ash, and they were 643%, 481%, 104% and 169% higher, respectively, than those in rye straw. The sulfur, chlorine and moisture contents of the six straw types under study were highly variable during the three years of the study. Knowledge of the properties of different types of straw as energy feedstocks facilitates the logistics and organization of the supply of bioenergy installations. However, further research is needed, especially studies assessing the energy intensity and logistical costs of different types of straw used for energy purposes.

Funder

the University of Warmia and Mazury in Olsztyn, Faculty of Agriculture and Forestry, Department of Genetics, Plant Breeding and Bioresource Engineering

Faculty of Technical Sciences, Department of Mechatronics

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3