Are Global Environmental Uncertainties Inevitable? Measuring Desertification for the SDGs

Author:

Grainger Alan

Abstract

Continuing uncertainty about the present magnitudes of global environmental change phenomena limits scientific understanding of human impacts on Planet Earth, and the quality of scientific advice to policy makers on how to tackle these phenomena. Yet why global environmental uncertainties are so great, why they persist, how their magnitudes differ from one phenomenon to another, and whether they can be reduced is poorly understood. To address these questions, a new tool, the Uncertainty Assessment Framework (UAF), is proposed that builds on previous research by dividing sources of environmental uncertainty into categories linked to features inherent in phenomena, and insufficient capacity to conceptualize and measure phenomena. Applying the UAF shows that, based on its scale, complexity, areal variability and turnover time, desertification is one of the most inherently uncertain global environmental change phenomena. Present uncertainty about desertification is also very high and persistent: the Uncertainty Score of a time series of five estimates of the global extent of desertification shows limited change and has a mean of 6.8, on a scale from 0 to 8, based on the presence of four conceptualization uncertainties (terminological difficulties, underspecification, understructuralization and using proxies) and four measurement uncertainties (random errors, systemic errors, scalar deficiencies and using subjective judgment). This suggests that realization of the Land Degradation Neutrality (LDN) Target 15.3 of the UN Sustainable Development Goal (SDG) 15 (“Life on Land”) will be difficult to monitor in dry areas. None of the estimates in the time series has an Uncertainty Score of 2 when, according to the UAF, evaluation by statistical methods alone would be appropriate. This supports claims that statistical methods have limitations for evaluating very uncertain phenomena. Global environmental uncertainties could be reduced by devising better rules for constructing global environmental information which integrate conceptualization and measurement. A set of seven rules derived from the UAF is applied here to show how to measure desertification, demonstrating that uncertainty about it is not inevitable. Recent review articles have advocated using ‘big data’ to fill national data gaps in monitoring LDN and other SDG 15 targets, but an evaluation of a sample of three exemplar studies using the UAF still gives a mean Uncertainty Score of 4.7, so this approach will not be straightforward.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Reference127 articles.

1. Desertification of Arid Lands;Dregne,1983

2. Desertification of Arid Lands

3. World Atlas of Desertification,1992

4. World Atlas of Desertification,1997

5. World Atlas of Desertification,2018

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3