Study on the Effect of Amorphous Silica from Waste Granite Powder on the Strength Development of Cement-Treated Clay for Soft Ground Improvement

Author:

Nakayenga JoyceORCID,Inui MutsukoORCID,Hata ToshiroORCID

Abstract

Granite powder (stone powder), a waste product generated from stone quarries, is increasingly being reused in cement-treated clays. The particle size of stone powders affects the cement-clay reaction by either increasing or reducing the unconfined compressive strength (UCS). This study investigated this phenomenon by separating stone powder from the same batch at the quarry into five particle sizes (A, B, C, D and E: 106–75 µm, 40–75 µm, 20–40 µm, <20 µm and 106–<1 µm, respectively). Flow value, fall cone, UCS and thermogravimetry-differential thermal analysis (TG-DTA), X-ray fluorescence, electrical conductivity and NaOH digestion tests were conducted. It was discovered that stone powder had an amorphization rate of up to 1.45% (14.5 mg/g of amorphous silica); hence, it was pozzolanic. However, the amorphousness varied with the particle size of the material in the order of D > E > C > B > A, which translated into UCS variation in the same order. Stone powders D and E played two roles in UCS development, i.e., nucleation of cementitious products and reaction with Ca(OH)2 to increase the UCS higher than the control sample. Linear regression equations determined the minimum concentration of amorphous silica for a UCS increment as 9.4 mg/g.

Funder

Japan Society for the Promotion of Science

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Reference63 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3