Thermal Analysis and Prediction Methods for Temperature Distribution of Slab Track Using Meteorological Data

Author:

Zhang Qiangqiang,Dai Gonglian,Tang YuORCID

Abstract

The structural temperature distribution, especially temperature difference caused by solar radiation, has a great impact on the deformation and curvature of the concrete slab tracks of high-speed railways. Previous studies mainly focused on the temperature prediction of slab tracks, while how the temperature distribution is affected by environmental conditions has been rarely investigated. Based on the integral transformation method, this work presents an analytical method to determine and decompose the temperature distribution of the concrete slab track. A field temperature test of a half-scaled specimen of concrete slab track was conducted to validate the developed methodology. In the proposed method, we decompose the temperature distribution of the slab track into an initial temperature component and a boundary temperature component. Then, the boundary temperature components caused by solar radiation and atmospheric temperature are investigated, respectively. The results show that the solar radiation plays a significant role in the nonlinear temperature distribution, while the atmospheric temperature has little effect. By contrast, the temperature change in the slab surface resulting from the atmospheric temperature accounts on average for only 5% in the hot weather condition. The proposed method establishes a relation between the structural temperature and meteorological parameters (i.e., the solar radiation and atmospheric temperature). Consequently, the temperature distribution of the concrete slab track is predicted via the meteorological parameters.

Funder

the Science and Technology Research and Development Key Program of China Railway Corporation

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3