Indoor Visual-Based Localization System for Multi-Rotor UAVs

Author:

Bertoni MassimilianoORCID,Michieletto StefanoORCID,Oboe RobertoORCID,Michieletto GiuliaORCID

Abstract

Industry 4.0, smart homes, and the Internet of Things are boosting the employment of autonomous aerial vehicles in indoor environments, where localization is still challenging, especially in the case of close and cluttered areas. In this paper, we propose a Visual Inertial Odometry localization method based on fiducial markers. Our approach enables multi-rotor aerial vehicle navigation in indoor environments and tackles the most challenging aspects of image-based indoor localization. In particular, we focus on a proper and continuous pose estimation, working from take-off to landing, at several different flying altitudes. With this aim, we designed a map of fiducial markers that produces results that are both dense and heterogeneous. Narrowly placed tags lead to minimal information loss during rapid aerial movements while four different classes of marker size provide consistency when the camera zooms in or out according to the vehicle distance from the ground. We have validated our approach by comparing the output of the localization algorithm with the ground-truth information collected through an optoelectronic motion capture system, using two different platforms in different flying conditions. The results show that error mean and standard deviation can remain constantly lower than 0.11 m, so not degrading when the aerial vehicle increases its altitude and, therefore, strongly improving similar state-of-the-art solutions.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Multi-sensor fusion for robust indoor localization of industrial UAVs using particle filter;Journal of Electrical Engineering;2024-08-01

2. Robust IR-Based Pose Estimation for Precision VTOL Aircraft Landing in Urban Environments;2024 International Conference on Unmanned Aircraft Systems (ICUAS);2024-06-04

3. Streamlined Indoor UAVs Localization Using a Dense and Size-Heterogeneous Tags Map;2024 International Conference on Unmanned Aircraft Systems (ICUAS);2024-06-04

4. UAV-Based Environmental Magnetic Field Measurement Method Using a TMR Sensor;IEEE Sensors Journal;2024-05-15

5. Framework for Evaluating Path Accuracy in UAV Indoor Operations;2023 3rd International Conference on Robotics, Automation and Artificial Intelligence (RAAI);2023-12-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3