Layer Composition of Continuously Reinforced Concrete Pavement Optimized Using a Regression Analysis Method

Author:

Cho Byoung HooiORCID,Won Moon,Nam Boo Hyun

Abstract

A procedure for determining the optimized composition of layer properties for a continuously reinforced concrete pavement (CRCP) system was constructed using field tests, finite element (FE) analysis, and regression analysis methods. The field support characteristics of a rigid pavement system were investigated using a falling weight deflectometer (FWD), dynamic cone penetrometer (DCP), and a static plate load test. The subgrade layer exhibited a more uniform condition than the aggregate base, and the modulus of the subgrade reaction of the aggregate base and subgrade combination (effective k-value) was improved by about 1.5 times by introducing a 2 inch (50.8 mm) asphalt stabilized base (ASB) layer. Thereafter, FE support models describing the actual field conditions were studied. The effects of the thickness of the stabilized base layer, the elastic modulus of the stabilized base material, and the effective k-value on the composite k-value of the support system were identified using a regression analysis method, and the results showed that the variables had a similar effect when determining the composite k-value. Afterward, a procedure for selecting the layer properties for producing a suitable composite k-value was constructed, and we identified that the maximum stress in the concrete slab was induced at different levels, even with identical composite k-values. Lastly, regression relationships were derived to estimate the maximum stress in the concrete slab by considering both the support layer properties and the concrete slab. Subsequently, an algorithm for selecting an optimized layer composition of the CRCP structure was construction considering the economical aspect.

Publisher

MDPI AG

Subject

Computer Science Applications,Geotechnical Engineering and Engineering Geology,General Materials Science,Building and Construction,Civil and Structural Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3