Bridge Inspection and Defect Recognition with Using Impact Echo Data, Probability, and Naive Bayes Classifiers

Author:

Jafari Faezeh,Dorafshan SattarORCID

Abstract

Interpretation of IE data have been carried out by analyzing IE signals in frequency domain to determine the maximum frequency. However, the current peak frequency method can be inaccurate. The purpose of this research is to introduce features in IE signals that can be used for effective classification and interpretation for bridge deck evaluation through statistical analysis and Naive Bayes classifiers. The dataset contained IE data collected from eight slabs created at Advanced Sensing Technology FAST NDE laboratory (FHWA). A set of statistical features in time domain, normalized peak values, and length of preprocessed signals were used to classify the IE data, statistically. Then, Naive Bayes classifiers was employed to recognize defect area. Finally, the result of statistical classification was compared with frequency approach. The result shows that 19 and 21% of the IE signals collected from the defect area have multiple peaks, respectively. However, 85% of the IE signals collected from the sound set had only one peak. A probability classifier was used to find the relationship between the result of the frequency method and statistical analysis. The result shows that 10% of the IE signals were usable for estimating the thickness in the sound group.

Publisher

MDPI AG

Subject

Computer Science Applications,Geotechnical Engineering and Engineering Geology,General Materials Science,Building and Construction,Civil and Structural Engineering

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3