A Machine-Learning Approach for Extracting Modulus of Compacted Unbound Aggregate Base and Subgrade Materials Using Intelligent Compaction Technology

Author:

Fathi Aria,Tirado CesarORCID,Rocha Sergio,Mazari Mehran,Nazarian Soheil

Abstract

This study presents a rigorous approach for the extraction of the modulus of soil and unbound aggregate base materials for quality management using intelligent compaction (IC) technology. The proposed approach makes use of machine-learning methods in tandem with IC technology and modulus-based spot testing as a local calibration process to estimate the mechanical properties of compacted geomaterials. A calibrated three-dimensional finite element (FE) model that simulates the proof-mapping process of compacted geomaterials was used to develop a comprehensive database of responses of a wide range of single and two-layered geosystems. The database was then used to develop different inverse solvers using artificial neural networks for the estimation of the modulus from the characteristics of the roller and information about the geomaterials. Several instrumented test sites were used for the evaluation and validation of the inverse solvers. The proposed approach was found promising for the extraction of the modulus of compacted geomaterials using IC. The accuracy of the inverse solvers is enhanced if a local calibration process is incorporated as part of a quality management program that includes the use of in situ measurements using modulus-based test devices and laboratory resilient modulus testing. Moreover, compaction uniformity plays a key role in the retrieval of the modulus of geomaterials with certainty. The proposed approach fuses artificial intelligence with mechanistic solutions to position IC as a technology that is well suited for the quality management of compacted materials.

Funder

National Cooperative Highway Research Program

Publisher

MDPI AG

Subject

Computer Science Applications,Geotechnical Engineering and Engineering Geology,General Materials Science,Building and Construction,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3