A Hybrid Surrogate Model for the Prediction of Solitary Wave Forces on the Coastal Bridge Decks

Author:

Wang Jinsheng,Xue Shihao,Xu GuojiORCID

Abstract

To facilitate the establishment of the probabilistic model for quantifying the vulnerability of coastal bridges to natural hazards and support the associated risk assessment and mitigation activities, it is imperative to develop an accurate and efficient method for wave forces prediction. With the fast development of computer science, surrogate modeling techniques have been commonly used as an effective alternative to computational fluid dynamics for the establishment of a predictive model in coastal engineering. In this paper, a hybrid surrogate model is proposed for the efficient and accurate prediction of the solitary wave forces acting on coastal bridge decks. The underlying idea of the proposed method is to enhance the prediction capability of the constructed model by introducing an additional surrogate to correct the errors made by the main predictor. Specifically, the regression-type polynomial chaos expansion (PCE) is employed as the main predictor to capture the global feature of the computational model, whereas the interpolation-type Kriging is adopted to learn the local variations of the prediction error from the PCE. An engineering case is employed to validate the effectiveness of the hybrid model, and it is observed that the prediction performance (in terms of residual mean square error and correlation coefficient) of the hybrid model is superior to the optimal PCE and artificial neural network (ANN) for both horizontal and vertical wave forces, albeit the maximum PCE degrees used in the hybrid model are lower than the optimal degrees identified in the pure PCE model. Moreover, the proposed hybrid model also enables the extraction of explicit predictive equations for the parameters of interest. It is expected that the hybrid model could be extended to more complex wave conditions and structural shapes to facilitate the life-cycle structural design and analysis of coastal bridges.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Computer Science Applications,Geotechnical Engineering and Engineering Geology,General Materials Science,Building and Construction,Civil and Structural Engineering

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3