Modification of Variance-Based Sensitivity Indices for Stochastic Evaluation of Monitoring Measures

Author:

Sanio DavidORCID,Ahrens Mark AlexanderORCID,Mark Peter

Abstract

In complex engineering models, various uncertain parameters affect the computational results. Most of them can only be estimated or assumed quite generally. In such a context, measurements are interesting to determine the most decisive parameters accurately. While measurements can reduce parameters’ variance, structural monitoring might improve general assumptions on distributions and their characteristics. The decision on variables being measured often relies on experts’ practical experience. This paper introduces a method to stochastically estimate the potential benefits of measurements by modified sensitivity indices. They extend the established variance-based sensitivity indices originally suggested by Sobol’. They do not quantify the importance of a variable but the importance of its variance reduction. The numerical computation is presented and exemplified on a reference structure, a 50-year-old pre-stressed concrete bridge in Germany, where the prediction of the fatigue lifetime of the pre-stressing steel is of concern. Sensitivity evaluation yields six important parameters (e.g., shape of the S–N curve, temperature loads, creep, and shrinkage). However, taking into account individual monitoring measures and suited measurements identified by the modified sensitivity indices, creep and shrinkage, temperature loads, and the residual pre-strain of the tendons turn out to be most efficient. They grant the highest gains of accuracy with respect to the lifetime prediction.

Funder

Deutsche Forschungsgemeinschaft

Publisher

MDPI AG

Subject

Computer Science Applications,Geotechnical Engineering and Engineering Geology,General Materials Science,Building and Construction,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3