gPCE-Based Stochastic Inverse Methods: A Benchmark Study from a Civil Engineer’s Perspective

Author:

Landi FilippoORCID,Marsili Francesca,Friedman Noemi,Croce PietroORCID

Abstract

In civil and mechanical engineering, Bayesian inverse methods may serve to calibrate the uncertain input parameters of a structural model given the measurements of the outputs. Through such a Bayesian framework, a probabilistic description of parameters to be calibrated can be obtained; this approach is more informative than a deterministic local minimum point derived from a classical optimization problem. In addition, building a response surface surrogate model could allow one to overcome computational difficulties. Here, the general polynomial chaos expansion (gPCE) theory is adopted with this objective in mind. Owing to the fact that the ability of these methods to identify uncertain inputs depends on several factors linked to the model under investigation, as well as the experiment carried out, the understanding of results is not univocal, often leading to doubtful conclusions. In this paper, the performances and the limitations of three gPCE-based stochastic inverse methods are compared: the Markov Chain Monte Carlo (MCMC), the polynomial chaos expansion-based Kalman Filter (PCE-KF) and a method based on the minimum mean square error (MMSE). Each method is tested on a benchmark comprised of seven models: four analytical abstract models, a one-dimensional static model, a one-dimensional dynamic model and a finite element (FE) model. The benchmark allows the exploration of relevant aspects of problems usually encountered in civil, bridge and infrastructure engineering, highlighting how the degree of non-linearity of the model, the magnitude of the prior uncertainties, the number of random variables characterizing the model, the information content of measurements and the measurement error affect the performance of Bayesian updating. The intention of this paper is to highlight the capabilities and limitations of each method, as well as to promote their critical application to complex case studies in the wider field of smarter and more informed infrastructure systems.

Publisher

MDPI AG

Subject

Computer Science Applications,Geotechnical Engineering and Engineering Geology,General Materials Science,Building and Construction,Civil and Structural Engineering

Reference67 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3