Dynamic Soil Structure Interaction of a High-Rise Building Resting over a Finned Pile Mat

Author:

Bariker PankajORCID,Kolathayar SreevalsaORCID

Abstract

High-rise building safety is generally supported by pile-mat systems. They must be sturdy enough to withstand potential lateral loads brought on by earthquakes, wind, dredging, and machine vibrations, in addition to increased axial loads. An innovative piled-mat foundation system is required to deal with these impacts because standard pile foundation systems only have lateral capacities that are 10% of their axial capacities. This study aims to reduce the damage caused by seismic impacts on high-rise buildings using shear walls supported by piled mats, thereby minimizing vibrations within the structure. Compared with conventional pile systems, the finned-pile foundation is a proven method that can withstand a 65% to 80% higher lateral load; hence, a series of SSI analyses were performed on a 25-story high-rise building, with the shear wall resting on a finned-pile mat (FP-Mat), under a far-field earthquake excitation, using ABAQUS software. The seismic responses were studied by performing a time–history analysis on the FP-Mat, with varying fin-lengths (Lf) of 0.2Lp, 0.4Lp, 0.6Lp, and 0.8Lp, which was compared with an analysis of a conventional piled-mat (RP-Mat). The seismic responses for RP-Mat and FP-Mats were studied with peak-acceleration, maximum horizontal displacement, and inter-story drifts acting as the damage parameters. The provision of FP-Mats significantly reduced the vibrations and seismic effects on the building, and as the fin-length increased, the vibrations and seismic effects reduced further. The drifting bound was also reduced as the fin-length increased. The optimum fin-length for FP-Mats is suggested to be 0.6Lp in terms of seismic performance and construction efficiency. This study helps one understand the seismic behaviors of high-rise buildings resting on finned pile mats.

Funder

Science and Engineering Research Board

Publisher

MDPI AG

Subject

Computer Science Applications,Geotechnical Engineering and Engineering Geology,General Materials Science,Building and Construction,Civil and Structural Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3