Comparative Assessment of Criticality Indices Extracted from Acoustic and Electrical Signals Detected in Marble Specimens

Author:

Kourkoulis Stavros K.ORCID,Pasiou Ermioni D.ORCID,Loukidis AndronikosORCID,Stavrakas IliasORCID,Triantis DimosORCID

Abstract

The quantitative determination of the current load carrying capability of already loaded structural elements and the possibility to detect proper indices that could be considered as signals for timely warning that the load carrying capacity is exhausted is the subject of this study. More specifically, it aims to explore the possibility of detecting signals that can be considered as indices warning about upcoming fracture and then to compare quantitatively such signals provided by different techniques. The novelty of the present study lies exactly in this quantitative comparison of the pre-failure signals provided by various sensing techniques and various methods of analysis of the experimental data. To achieve this target, advantage is taken of data concerning the acoustic and electrical activities produced while marble specimens are subjected to mechanical loading. The respective signals are detected and recorded by means of the acoustic emissions technique and that of the pressure stimulated currents. The signals detected by the acoustic emissions technique are analyzed in terms of three formulations, i.e., the b-value, the F-function and the parameters variance κ1, entropy S and entropy under time reversal S_ according to the natural time analysis. The signals detected by the pressure stimulated currents technique are analyzed by means of the intensity of the electric current recorded. The study indicates that all quantities considered provide promising pre-failure indicators. Furthermore, when the specimen is subjected to near-to-failure load levels, the temporal evolution of three of the quantities studied (b-value, F-function, pressure stimulated currents) is governed by a specific power law. The onset of validity of this law designates some differentiation of the damage mechanisms activated. Quantitative differences are observed between the time instants at which this power law starts dictating the evolution of the above parameters, indicating the imperative need for further investigation, despite the quite encouraging results of the present study.

Publisher

MDPI AG

Subject

Computer Science Applications,Geotechnical Engineering and Engineering Geology,General Materials Science,Building and Construction,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3