Risk-Based Criticality Assessment for Smart Critical Infrastructures

Author:

Almaleh AbdulazizORCID,Tipper David

Abstract

Today, critical infrastructure is more interconnected, which allows more vulnerabilities in the case of disasters. In addition, the effect of one infrastructure can lead to one or more cascading failures in another infrastructure due to the dependency complexity between them. This article introduces a holistic approach using network indicators and machine learning to better understand the geographical representation of critical infrastructure. Previous work on a similar model was based on a single measure; such as in fashion, this paper introduces four measures utilized to identify the most vital geographic zone in the city. The model aims to increase resilience, focusing on the preparedness phase by assessing the essential nodes of infrastructure, which allows more space to adopt risk mitigation strategies before any disturbance event. Holding in-depth knowledge of the vital zones of small scales and accordingly ranking them will positively improve the overall system resilience.

Publisher

MDPI AG

Subject

Computer Science Applications,Geotechnical Engineering and Engineering Geology,General Materials Science,Building and Construction,Civil and Structural Engineering

Reference27 articles.

1. Constructing a Resilience Index for the Enhanced Critical Infrastructure Protection Program;Fisher,2010

2. Building resilient communities: A preliminary framework for assessment;Longstaff;Homel. Secur. Aff.,2010

3. Sociotechnical Network Analysis for Power Grid Resilience in South Korea

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3