Field-Deployable Fiber Optic Sensor System for Structural Health Monitoring of Steel Girder Highway Bridges

Author:

Lu Renxiang,Judd JohnnORCID

Abstract

Structural health monitoring of highway bridges is a vital but currently challenging aspect of infrastructure engineering due to the number of sensors required, power requirements, and harsh environmental conditions. The purpose of this study is to develop a structural health monitoring system using fiber optic sensors based on fiber Bragg gratings that addresses these issues and is field deployable. Prototype systems were installed on two steel girder bridges. The first bridge used sensors adhered to the web and flange. The second bridge used a flange-only array of mechanically mounted sensors. The results demonstrated the accuracy of the fiber Bragg grating sensors and indicated that fewer multiplexed fiber optic cables and loosely routed cables were needed to maintain signal integrity. Adhered sensors were prone to lose their bond due to the curing conditions in the field. The findings suggest that the proposed system may be best used in a hybrid deployment, where a diagnostic field test with conventional sensors is used to determine the baseline bridge response and fiber optic sensors are periodically installed for short-term monitoring.

Funder

Federal Highway Administration

Wyoming Department of Transportation

Publisher

MDPI AG

Subject

Computer Science Applications,Geotechnical Engineering and Engineering Geology,General Materials Science,Building and Construction,Civil and Structural Engineering

Reference42 articles.

1. 2021 Report Card for America’s Infrastructure,2021

2. Objective Load Rating of a Steel-Girder Bridge Using Structural Modeling and Health Monitoring

3. State of the Practice and Art for Structural Health Monitoring of Bridge Substructures;Collins,2014

4. Development of fiber Bragg grating sensors for monitoring civil infrastructure

5. Chapter 29—Bridge monitoring;Vardanega,2016

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3