Impact of the Height of Buildings on the Maintainability of Natural Stone Claddings

Author:

Ferreira CláudiaORCID,Silva AnaORCID,de Brito JorgeORCID

Abstract

The buildings’ surroundings’ environmental exposure conditions (e.g., orientation, location, altitude, distance from the sea, temperature, precipitation, presence of damp, exposure to prevailing winds, among others) have a considerable influence on the performance and durability of their envelope. Furthermore, the intensity of these conditions can vary significantly with the height of the building and, consequently, influence the degradation of different parts of the same building in different ways. In a tall building, the upper part is more prone to higher solar radiation levels, temperature variations, and exposure to wind–rain action. On the other hand, external elements at the bottom are more susceptible to high levels of pollution, especially in city centres. In this sense, the main purpose of this study was to analyse the degradation processes in buildings with different heights and understand whether the processes and maintenance requirements are statistically different. A sample of 203 natural stone claddings (NSC), located in Portugal, was used as case study. The sample was collected based on the diagnosis of the degradation condition of these claddings through in situ visual inspections. To predict the degradation process of NSC over time, a stochastic service life prediction model, based on Petri nets (PN), was implemented. This model allows evaluating the performance of NSC by encompassing the uncertainty of the future performance of the claddings. The results obtained through the degradation and maintenance models were compared with real case studies to highlight the real impact of buildings’ height subjected to environmental exposure conditions on the maintainability of NSC.

Funder

Fundação para a Ciência e Tecnologia

Publisher

MDPI AG

Subject

Computer Science Applications,Geotechnical Engineering and Engineering Geology,General Materials Science,Building and Construction,Civil and Structural Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3