Optimizing Financial Allocation for Maintenance and Rehabilitation of Munster’s Road Network Using the World Bank’s RONET Model

Author:

Lima Mayara S. SiverioORCID,Buttgereit Alexander,Queiroz CesarORCID,Haritonovs ViktorsORCID,Gschösser FlorianORCID

Abstract

This paper applies the Road Network Evaluation Tools (RONET) model to assess the economic impacts of urban pavement maintenance and rehabilitation in the city of Munster, Germany. The city’s road network includes main roads, main access roads, residential roads, and paved areas for pedestrians, cyclists, and parking spaces. The specific traffic loads applied to Munster’s network demand several different pavement materials, structures, and intervention procedures. This study aims to support stakeholders’ decision-making by assessing current expenditures, network conditions, and country-specific data to determine the appropriate financial allocation for recurrent maintenance, periodic maintenance, rehabilitation, and new pavement construction. Six scenarios comprising distinct pavement structures and maintenance strategies are modeled in RONET to perform the analysis. The outcomes include the future deterioration of pavements under different maintenance scenarios, the current and projected asset value of the network, and the total costs (road agency costs + user costs) of the network to society, considering each scenario being applied over a 20-year evaluation period. The RONET model also provides the annual average cost of each maintenance procedure and the additional costs to society while using a budget scenario other than ‘Optimal.’ The results indicate that Munster’s current investment program is in line with the ‘Optimal’ budget scenario proposed by RONET. In addition, the model suggests that performing recurrent and periodic interventions is more cost-effective than neglecting the conservation of pavements for an extended period and endorsing more extensive interventions in the future, such as rehabilitation or reconstruction.

Funder

European Union

Latvian Council of Science

Publisher

MDPI AG

Subject

Computer Science Applications,Geotechnical Engineering and Engineering Geology,General Materials Science,Building and Construction,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3