Abstract
The current study aimed to evaluate the influence of different sintering temperatures on the properties of copper aluminum oxide (CuAlO2) pellets synthesized from copper oxide (CuO) and aluminum hydroxide (Al(OH)3) for application in smart infrastructure systems. The pellets were sintered at 400 K, 1000 K, and 1300 K, in the presence of nitrogen gas flow to reduce the amount of oxygen availability. The CuAlO2 sintered nanoparticles were chemically analyzed by X-ray diffractometry, and the nanostructure of the materials was studied by scanning electron microscopy. The transmittance of the sintered materials was examined by ultraviolet/visible (UV/Vis) spectrophotometry, and 88% transparency was observed for the pellets sintered at 1300 K. Electrical conductivity was measured at 0.905 mS/cm, indicating a semiconducting behavior.
Subject
Computer Science Applications,Geotechnical Engineering and Engineering Geology,General Materials Science,Building and Construction,Civil and Structural Engineering