Multi-Context Point Cloud Dataset and Machine Learning for Railway Semantic Segmentation

Author:

Kharroubi Abderrazzaq1ORCID,Ballouch Zouhair12ORCID,Hajji Rafika2ORCID,Yarroudh Anass1ORCID,Billen Roland1ORCID

Affiliation:

1. Unité de Recherche SPHERES, Geomatics Unit, University of Liège, 4000 Liège, Belgium

2. College of Geomatic Sciences and Surveying Engineering, Hassan II Institute of Agronomy and Veterinary Medicine, Rabat 10101, Morocco

Abstract

Railway scene understanding is crucial for various applications, including autonomous trains, digital twining, and infrastructure change monitoring. However, the development of the latter is constrained by the lack of annotated datasets and limitations of existing algorithms. To address this challenge, we present Rail3D, the first comprehensive dataset for semantic segmentation in railway environments with a comparative analysis. Rail3D encompasses three distinct railway contexts from Hungary, France, and Belgium, capturing a wide range of railway assets and conditions. With over 288 million annotated points, Rail3D surpasses existing datasets in size and diversity, enabling the training of generalizable machine learning models. We conducted a generic classification with nine universal classes (Ground, Vegetation, Rail, Poles, Wires, Signals, Fence, Installation, and Building) and evaluated the performance of three state-of-the-art models: KPConv (Kernel Point Convolution), LightGBM, and Random Forest. The best performing model, a fine-tuned KPConv, achieved a mean Intersection over Union (mIoU) of 86%. While the LightGBM-based method achieved a mIoU of 71%, outperforming Random Forest. This study will benefit infrastructure experts and railway researchers by providing a comprehensive dataset and benchmarks for 3D semantic segmentation. The data and code are publicly available for France and Hungary, with continuous updates based on user feedback.

Funder

Fonds de la Recherche Scientifique FNRS

Publisher

MDPI AG

Reference81 articles.

1. Soilán, M., Sánchez-Rodríguez, A., Del Río-Barral, P., Perez-Collazo, C., Arias, P., and Riveiro, B. (2019). Review of laser scanning technologies and their applications for road and railway infrastructure monitoring. Infrastructures, 4.

2. Lamas, D., Soilán, M., Grandío, J., and Riveiro, B. (2021). Automatic point cloud semantic segmentation of complex railway environments. Remote Sens., 13.

3. Chen, X., Chen, Z., Liu, G., Chen, K., Wang, L., Xiang, W., and Zhang, R. (2021). Railway overhead contact system point cloud classification. Sensors, 21.

4. Roynard, X., Deschaud, J.-E., and Goulette, F. (2023, December 14). Paris-Lille-3D: A Point Cloud Dataset for Urban Scene Segmentation and Classification. Available online: http://caor-mines-paristech.fr/fr/.

5. Tan, W., Qin, N., Ma, L., Li, Y., Du, J., Cai, G., Yang, K., and Li, J. (2023, December 14). Toronto-3D: A Large-scale Mobile LiDAR Dataset for Semantic Segmentation of Urban Roadways. Available online: https://www.cloudcompare.org.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3