Application of PS-InSAR and Diagnostic Train Measurement Techniques for Monitoring Subsidence in High-Speed Railway in Konya, Türkiye

Author:

Kizilirmak Gokhan12ORCID,Cakir Ziyadin3ORCID

Affiliation:

1. Doctorate Program of Satellite Communication and Remote Sensing, Communication Systems Department, Graduate School, Istanbul Technical University (ITU), 34469 Istanbul, Türkiye

2. Turkish State Railways (TCDD), Railway Research and Technology Center (DATEM), 06050 Ankara, Türkiye

3. Department of Geological Engineering, Istanbul Technical University (ITU), 34469 Istanbul, Türkiye

Abstract

Large-scale man-made linear structures like high-speed railway lines have become increasingly important in modern life as a faster and more comfortable transportation option. Subsidence or longitudinal levelling deformation problems along these railway lines can prevent the line from operating effectively and, in some cases, require speed reduction, continuous maintenance or repairs. In this study, the longitudinal levelling deformation of the high-speed railway line passing through Konya province (Central Turkey) was analyzed for the first time using the Persistent Scatter Synthetic Aperture Radar Interferometry (PS-InSAR) technique in conjunction with diagnostic train measurements, and the correlation values between them were found. In order to monitor potential levelling deformation along the railway line, medium-resolution, free-of-charge C-band Sentinel-1 (S-1) data and high-resolution, but paid, X-band Cosmo-SkyMed (CSK) Synthetic Aperture Radar (SAR) data were analyzed from the diagnostic train and reports received from the relevant maintenance department. Comparison analyses of the results obtained from the diagnostic train and radar measurements were carried out for three regions with different deformation scenarios, selected from a 30 km railway line within the whole analysis area. PS-InSAR measurements indicated subsidence events of up to 40 mm/year along the railway through the alluvial sediments of the Konya basin, which showed good agreement with the diagnostic train. This indicates that the levelling deformation of the railway and its surroundings can be monitored efficiently, rapidly and cost-effectively using the InSAR technique.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3