Fatigue Consideration for Tension Flange over Intermediate Support in Skewed Continuous Steel I-Girder Bridges

Author:

Tabiatnejad Dariya1ORCID,Khedmatgozar Dolati Seyed Saman1ORCID,Mehrabi Armin1ORCID,Helwig Todd A.2

Affiliation:

1. Department of Civil and Environmental Engineering, Florida International University, Miami, FL 33174, USA

2. Department of Civil, Architectural and Environmental Engineering, University of Texas at Austin, Austin, TX 78758, USA

Abstract

Skewed supports complicate load paths in continuous steel I-girder bridges, causing secondary stresses and differential deformations. For a continuous bridge where tensile stresses are developed in the top flange of the steel girders over the intermediate supports, these effects may exacerbate potential fatigue issues for the top flanges. There is a gap in knowledge regarding the level of stress one can expect at these locations, and the stress level can render the problem either serious or trivial. This paper has been successful in providing this information, which was not available before. The study examines the fatigue performance of the top flange in girders over skewed supports. Results are presented from a detailed investigation consisting of 3D finite element modeling to evaluate 26 skewed bridges in the State of Florida that represent the wide range of geometries found in practice. The analysis focused on stress ranges in the top flanges and axial demands on end cross-frame members under fatigue truck loading. A preliminary analysis helped to select the appropriate element type and support conditions. The maximum factored stress range of 3.63 ksi obtained for the selected group of bridges remains below the 10 ksi fatigue threshold for an AASHTO Category C connection, alleviating the concerns about the fatigue performance of the continuous girder top flange over the intermediate pier. Hence, fatigue is unlikely to be a concern in the flanges at this location. Statistics on computed stress ranges and cross-frame forces that provide an understanding of the expected values and guidance for detailing practices are also presented. A limited comparative refined FE analysis on two different types of end cross-frame to girder connections also provided useful insight into the fatigue sensitivities of the skew connections. Half-Round Bearing Stiffener (HRBS) connections performed better than the customary bent plate connections. The HRBS connection reduces girder flange stress concentration range by at least 18% compared to the bent plate connection. The maximum stress concentration range in bent plate components is significantly higher than in the HRBS connection components. The work documented in this paper is important for understanding the fatigue performance of the cross-frames and girders in support regions in the upcoming 10th edition of the AASHTO Bridge Design Specifications that may include plate stiffeners oriented either normally or skewed to the girder web, or Half-Round Bearing Stiffeners.

Funder

Florida Department of Transportation

Publisher

MDPI AG

Reference38 articles.

1. U.S. Department of Transportation, and Federal Highway Administration (FHWA) (2022). National Bridge Inventory.

2. AASHTO (2020). AASHTO LRFD Bridge Design Specifications.

3. Influence of skew angle on reinforced concrete slab bridges;Menassa;J. Bridge Eng.,2007

4. Wheel load distribution on simply supported skew I-beam composite bridges;Bishara;J. Struct. Eng.,1993

5. Rajagopalan, N. (2006). Bridge Superstructure, Alpha Science Int’l Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3