The Influence of Soil Deformability on the Seismic Response of 3D Mixed R/C–Steel Buildings

Author:

Askouni Paraskevi K.1ORCID

Affiliation:

1. Department of Civil Engineering, University of Patras, 26500 Patras, Greece

Abstract

Following effective seismic codes, common buildings are considered to be made of the same material throughout the story distribution and based on an ideal rigid soil. However, in daily construction practice, there are often cases of buildings formed by a bottom part constructed with reinforced concrete (r/c) and a higher steel part, despite this construction type not being recognized by code assumptions. In addition, soil deformability, commonly referred to as the Soil–Structure Interaction (SSI), is widely found to affect the earthquake response of typical residence structures, apart from special structures, though it is not included in the normative design procedure. This work studies the seismic response of in-height mixed 3D models, considering the effect of sustaining deformable ground compared to the common rigid soil hypothesis, which has not been clarified so far in the literature. Two types of soft soil, as well as the rigid soil assumption, acting as a reference point, are considered, while two limit interconnections between the steel part on the concrete part are included in the group analysis. The possible influence of the seismic orientation angle is explored in the analysis set. Selected numerical results of the dynamic nonlinear analyses under strong near-fault ground excitations were plotted through dimensionless parameters to facilitate an objective comparative discussion. The effect of SSI on the nonlinear performance of three-dimensional mixed models is identified, which serves as the primary contribution of this work, making it unique among the numerous research works available globally and pointing to findings that are useful for the enhancement of the seismic rules regarding the design and analysis of code-neglected mixed buildings.

Publisher

MDPI AG

Reference60 articles.

1. (2004). Design of Concrete Structures—Part 1-1: General Rules and Rules for Buildings. Standard No. EN 1992-1-1 Eurocode 2 (EC2).

2. (2009). Design of Steel Structures—Part 1-1: General Rules and Rules for Buildings. Standard No. EN 1993-1-1 Eurocode 3 (EC3).

3. (2004). Design of Structures for Earthquake Resistance—Part 1: General Rules, Seismic Actions and Rules for Buildings, Part 3: Strengthening and Repair of Buildings, Part 5: Foundations, Retaining Structures and Geotechnical Aspects. Part 6: Towers, Masts and Chimneys. Standard No. EN 1998-5 Eurocode 8 (EC8).

4. Maley, T.J., Sullivann, T.J., and Pampanin, S. (2012, January 24–28). Issues with the seismic design of mixed MRF Systems. Proceedings of the 15th World Conference on Earthquake Engineering, Lisboa, Portugal.

5. Seismic design of secondary structures: State of the art;Villaverde;J. Struct. Eng.,1997

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3