Impact of PEG400–Zeolite Performance as a Material for Enhancing Strength of the Mechanical Properties of LECA/Foamed Lightweight Concrete

Author:

Al-Jabali Hebah Mohammad1,Edris Walid Fouad23,Khairy Shady4,Mohamed Ghada N.4ORCID,Elsayed Hebatallah A.5,El-Latief Ahmed A.4

Affiliation:

1. Department of Civil Engineering, Hijjawi Faculty for Engineering Technology, Yarmouk University, P.O. Box 566, Irbid 21163, Jordan

2. Department of Civil and Environmental Engineering, College of Engineering & Design, Kingdom University, Riffa P.O. Box 40434, Bahrain

3. Department of Civil Engineering, Giza High Institute of Engineering and Technology, Giza P.O. Box 12611, Egypt

4. Department of Civil Engineering, Higher Technological Institute, 10th of Ramadan City P.O Box 44629, Egypt

5. Civil Engineering Department, Institute of Engineering Research and New and Renewable Energy, National Research Centre, Cairo 11632, Egypt

Abstract

A versatile building material, foamed concrete is made of cement, fine aggregate, and foam combined with coarse aggregate. This study provides a description of how constant coarse aggregate replacement (50%) of LECA and foamed concrete, which are lightweight concrete types, by zeolite as a filler and PEG-400 as a plasticizer, water retention agent, and strength enhancer affect the mechanical properties of the cement. A study that examined the characteristics of cellular lightweight concrete in both its fresh and hardened forms was carried out for both foamed concrete and LECA concrete. In order to do this, a composite of zeolite and polyethylene glycol 400 was made using the direct absorption method, and no leakage was seen. Zeolite was loaded to a level of 10% and 20% of the total weight in cement, while 400 g/mol PEG was used at levels of 1%, 1.5%, and 2% of the cement’s weight. Various mixtures having a dry density of 1250 kg/m3 were produced. Properties like dry density, splitting tensile strength, and compressive strength were measured. An increase in the amount of PEG400–zeolite was seen to lower the workability, or slump, of both foamed and LECA concrete, while the replacement of aggregate by zeolite resulted in an exponential drop in both compressive and flexural strengths.

Funder

Kingdom University

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3